网站首页 > 技术文章 正文
最近领导安排让我每周定时把grafana导出的csv文件进行统计汇总工作,需要处理的csv文件还是蛮多的,况且还要每周重复汇总处理。干脆写个脚本,每周执行一遍脚本,既方便还不会出错。
一、需求分析
1. 原始文件分析
原始文件是多个csv表格,第一列为时间戳,每10分钟统计生成一行,其余列为ip地址在该时间段内的访问次数
2. 处理结果分析
根据要求,统计每个ip地址在当天访问次数求和,汇总生成新表格,结果如下,并将所有csv文件按照文件名,分别汇总到不同的sheet下
二、代码逻辑
1. 流程分析
- 首先遍历指定目录下的.csv文件,提取文件名生成数组
- 然后使用pandas库读取csv文件,提取日期和ip,然后统计每个ip当天访问次数,生成新的DataFrame
- 最后使用xlwings库将pandas处理后的DataFrame数据写入excel文件,指定文件名作为sheet名
2. 遍历指定目录下.csv文件
主要用到了os模块中的walk()函数,可以遍历文件夹下所有的文件名。
def find_csv(path):
"""
查找目录下csv文件
:param path: 查找csv的目录路径
:return: csv文件名list
"""
csv_file = []
for root, dirs, files in os.walk(path):
for file in files:
if os.path.splitext(file)[1] == '.csv':
csv_file.append(os.path.join(root, file))
return csv_file
3. pandas处理csv文件
pandas是python环境下最有名的数据统计包,对于数据挖掘和数据分析,以及数据清洗等工作,用pandas再合适不过了,官方地址:https://www.pypandas.cn/
def summary_data(file):
"""
grafana导出的csv文件处理汇总
:param file: csv文件路径
:return: 处理完成后的pandas对象
"""
# 读取整个csv文件
csv_data = pd.read_csv(file, ';')
# 提取日期
csv_data["Time"] = csv_data["Time"].map(lambda Time: Time[0:10])
date = csv_data["Time"].drop_duplicates()
# 提取IP
ip_list = csv_data.columns.values[1:]
# 生成新列表
result_data = []
for day in list(date):
ip_data = []
for ip in ip_list:
# 统计指定ip地址在指定日期的数据之和
ip_sum = csv_data.loc[csv_data['Time'] == day, ip].sum()
ip_data.append(ip_sum)
# print("日期:%s ip:%s 总计:%s" % (day, ip, ip_sum))
result_data.append(ip_data)
# 生成新的DataFrame
result_df = pd.DataFrame(result_data, index=list(date), columns=ip_list)
# 添加行列统计
result_df['day_sum'] = result_df.apply(lambda x: x.sum(), axis=1)
result_df.loc['ip_sum'] = result_df.apply(lambda x: x.sum())
print(file, "处理完毕!")
return result_df
4. excel数据写入
pandas的to_excel方法也可以写入到excel文件,但是如果需要写入到指定的sheet,就无法满足需求了,此时就需要用的xlwings或者openpyxl库,此处使用xlwings,参考文档:
https://www.xlwings.org/pro
def save_excel(data_df, file_name, excel_name):
"""
生成并写入新excel文件
:param data_df: pandas数据对象
:param file_name: 传入文件名,作为生成的sheet名称
:param excel_name: 生成excel文件名
:return: null
"""
sheet_name = file_name[file_name.rfind('/', 1) + 1:file_name.rfind('.', 1)]
wb = xlwings.Book(excel_name)
sheet = wb.sheets.add(name=sheet_name)
sheet.range("A1").value = data_df
wb.save()
wb.close()
print(sheet_name, "Sheet写入完毕!")
5. 完整代码
import os
import pandas as pd
import xlwings
def find_csv(path):
"""
查找目录下csv文件
:param path: 查找csv的目录路径
:return: csv文件名list
"""
csv_file = []
for root, dirs, files in os.walk(path):
for file in files:
if os.path.splitext(file)[1] == '.csv':
csv_file.append(os.path.join(root, file))
return csv_file
def summary_data(file):
"""
grafana导出的csv文件处理汇总
:param file: csv文件路径
:return: 处理完成后的pandas对象
"""
# 读取整个csv文件
csv_data = pd.read_csv(file, ';')
# 提取日期
csv_data["Time"] = csv_data["Time"].map(lambda Time: Time[0:10])
date = csv_data["Time"].drop_duplicates()
# 提取IP
ip_list = csv_data.columns.values[1:]
# 生成新列表
result_data = []
for day in list(date):
ip_data = []
for ip in ip_list:
ip_sum = csv_data.loc[csv_data['Time'] == day, ip].sum()
ip_data.append(ip_sum)
# print("日期:%s ip:%s 总计:%s" % (day, ip, ip_sum))
result_data.append(ip_data)
result_df = pd.DataFrame(result_data, index=list(date), columns=ip_list)
# 添加行列统计
result_df['day_sum'] = result_df.apply(lambda x: x.sum(), axis=1)
result_df.loc['ip_sum'] = result_df.apply(lambda x: x.sum())
print(file, "处理完毕!")
return result_df
def save_excel(data_df, file_name, excel_name):
"""
生成并写入新excel文件
:param data_df: pandas数据对象
:param file_name: 传入文件名,作为生成的sheet名称
:param excel_name: 生成excel文件名
:return: null
"""
sheet_name = file_name[file_name.rfind('/', 1) + 1:file_name.rfind('.', 1)]
wb = xlwings.Book(excel_name)
sheet = wb.sheets.add(name=sheet_name)
sheet.range("A1").value = data_df
wb.save()
wb.close()
print(sheet_name, "Sheet写入完毕!")
if __name__ == '__main__':
# 原始csv文件存放路径
path = './csv'
# 生成excel文件名
excel_name = 'cm.xlsx'
csv_file = find_csv(path)
# 创建excel文件
new_excel = pd.DataFrame()
new_excel.to_excel(excel_name)
# 处理并写入excel文件
for file in csv_file:
data_df = summary_data(file)
save_excel(data_df, file, excel_name)
# 删除默认Sheet1
wb = xlwings.Book(excel_name)
wb.sheets['Sheet1'].delete()
wb.save()
wb.close()
print("数据汇总完毕,生成文件路径 %s/%s" % (os.getcwd(), excel_name))
https://www.linuxprobe.com/python-csv-excel.html
猜你喜欢
- 2025-03-24 Excel支持Python了,你先冷静一下
- 2025-03-24 解放双手,利用python自动完成ppt
- 2025-03-24 如何在VS Code中编写、编译、调试Python代码
- 2025-03-24 少儿编程学习Python这三本书就够了,入门到精通,8岁即可入手
- 2025-03-24 一篇文章告诉你作为普通人Python该不该学,适不适合学
- 2025-03-24 python爬虫神器 Pyppeteer使用方法解析
- 2025-03-24 用 Python 库 PySimpleGUI 制作自动化办公小软件
- 2025-03-24 一款可以运行python的单片机(一款可以运行python的单片机软件)
- 2025-03-24 Python 操作mysql实现事务处理(python操作mysql)
- 2025-03-24 一日一技:Python中的gcd()方法(python中的gil)
- 265℃Python短文,Python中的嵌套条件语句(六)
- 264℃python笔记:for循环嵌套。end=""的作用,图形打印
- 263℃PythonNet:实现Python与.Net代码相互调用!
- 257℃Python操作Sqlserver数据库(多库同时异步执行:增删改查)
- 257℃Python实现字符串小写转大写并写入文件
- 117℃原来2025是完美的平方年,一起探索六种平方的算吧
- 97℃Python 和 JavaScript 终于联姻了!PythonMonkey 要火?
- 90℃Ollama v0.4.5-v0.4.7 更新集合:Ollama Python 库改进、新模型支持
- 最近发表
-
- 金母鸡量化教学场:pandas—数据挖掘的Python库
- 分享一个用于商业决策数据挖掘的python案例
- Python图像识别实战(二):批量图像读取和像素转换(附源码)
- 从小白到大神,这10个超实用的 Python 编程技巧不可少
- 太震撼!527页战略级Python机器学习实战,实用度碾压群书!附PDF
- 一篇文章带你解析Python进程(一篇文章带你解析python进程怎么写)
- 大数据分析师如何进行数据挖掘?大数据分析师丨 2025 年报考攻略
- UG编程第34节:浅谈机床坐标系(ug编程机床坐标系细节)
- 想入门Python?先狠下心来死磕这7个方向
- Python大屏看板最全教程之Pyecharts图表
- 标签列表
-
- python中类 (31)
- python 迭代 (34)
- python 小写 (35)
- python怎么输出 (33)
- python 日志 (35)
- python语音 (31)
- python 工程师 (34)
- python3 安装 (31)
- python音乐 (31)
- 安卓 python (32)
- python 小游戏 (32)
- python 安卓 (31)
- python聚类 (34)
- python向量 (31)
- python大全 (31)
- python次方 (33)
- python桌面 (32)
- python总结 (34)
- python浏览器 (32)
- python 请求 (32)
- python 前端 (32)
- python验证码 (33)
- python 题目 (32)
- python 文件写 (33)
- python中的用法 (32)