程序员文章、书籍推荐和程序员创业信息与资源分享平台

网站首页 > 技术文章 正文

全网最详尽的Python遍历的高级用法,程序员必收藏!

hfteth 2025-05-16 13:29:34 技术文章 11 ℃

1.内置函数的高阶用法。

numbers = [1, 2, 3, 4]

squared = list(map(lambda x: x**2, numbers)) # [1, 4, 9, 16]

```

- **`filter()`**:筛选满足条件的元素。

```python

even_numbers = list(filter(lambda x: x % 2 == 0, numbers)) # [2, 4]

```

- **`zip()`**:将多个可迭代对象合并为元组。

```python

a = [1, 2, 3]

b = ['a', 'b', 'c']

combined = list(zip(a, b)) # [(1, 'a'), (2, 'b'), (3, 'c')]

```

- **`enumerate()`**:同时获取索引和元素。

```python

for index, value in enumerate(numbers):

print(f"Index {index}: {value}")

```

---

#### 2. **迭代器与生成器**

- **生成器表达式**:节省内存的遍历方式。

```python

# 计算平方数的生成器

squares = (x**2 for x in range(5))

for num in squares:

print(num) 输出 #0,1,4,9,16

```

- **`yield`关键字**:创建自定义生成器。

```python

def my_generator(n):

for i in range(n):

yield i

gen = my_generator(3)

print(next(gen)) # 0

print(next(gen)) # 1

print(next(gen)) # 2

```

- **`__iter__()` 和 `__next__()`**:实现自定义迭代器。

```python

class MyIterator:

def __init__(self, max_value):

self.max_value = max_value

self.current = 0


def __iter__(self):

return self


def __next__(self):

if self.current >= self.max_value:

raise StopIteration

value = self.current

self.current += 1

return value


it = MyIterator(3)

for num in it:

print(num) # 输出0,1,2

```

---

#### 3. **列表推导式**

- 列表推导式是一种简洁的遍历方式,支持条件判断和嵌套循环。

```python

# 嵌套循环

matrix = [[1, 2], [3, 4]]

flattened = [num for row in matrix for num in row] # [1,2,3,4]


# 条件判断

even_squares = [x**2 for x in range(5) if x % 2 == 0] # [0,4,16]

```

---

#### 4. **多线程与异步遍历**

- **`threading`模块**:在多个线程中并行处理任务。

```python

import threading


def process_item(item):

print(f"Processing {item}")


items = [1, 2, 3, 4]

threads = []

for item in items:

thread = threading.Thread(target=process_item, args=(item,))

threads.append(thread)

thread.start()


for thread in threads:

thread.join()

```

- **`asyncio`库**:异步遍历和协程。

```python

import asyncio


async def process_item(item):

print(f"Processing {item}")

await asyncio.sleep(1)


async def main():

items = [1, 2, 3, 4]

tasks = [process_item(item) for item in items]

await asyncio.gather(*tasks)


asyncio.run(main())

```

---

#### 5. **其他高级技巧**

- **`itertools`模块**:提供高效的迭代工具。

```python

import itertools


# 无限迭代

counter = itertools.count(start=1)

for _ in range(3):

print(next(counter)) # 输出1,2,3


# 组合与排列

combinations = itertools.combinations([1,2,3], 2)

print(list(combinations)) # [(1,2), (1,3), (2,3)]

```

- **装饰器模式**:增强遍历功能。

```python

def log_decorator(func):

def wrapper(*args, **kwargs):

result = func(*args, **kwargs)

print(f"Logged: {result}")

return result

return wrapper


@log_decorator

def get_item(index):

return f"Item {index}"


for i in range(3):

get_item(i)

# 输出:

# Logged: Item 0

# Logged: Item 1

# Logged: Item 2


Python的遍历机制非常灵活,可以通过内置函数、生成器、列表推导式、多线程和异步等方式实现高效和优雅的代码。选择合适的遍历方法取决于具体需求,例如性能优化、代码简洁性或并行处理等。

Tags:

最近发表
标签列表