网站首页 > 技术文章 正文
1. 超越文件处理的内容管理器
大多数开发人员都熟悉使用 with 语句进行文件操作:
with open('file.txt', 'r') as file:
content = file.read()
# File is automatically closed after this block
但是, 内容管理器 可以做更多更多。它们是所有类型资源管理的完美选择:
from contextlib import contextmanager
import time
@contextmanager
def timer():
"""Measure execution time of a code block."""
start = time.time()
try:
yield # This is where the code within the 'with' block executes
finally:
end = time.time()
print(f"Elapsed time: {end - start:.4f} seconds")
# Usage
with timer():
# Some time-consuming operation
result = sum(range(10_000_000))
contextlib 模块还提供了方便的工具,比如 suppress 用于抑制特定的异常 :
from contextlib import suppress
# Instead of:
try:
os.remove('temp_file.txt')
except FileNotFoundError:
pass
# You can write:
with suppress(FileNotFoundError):
os.remove('temp_file.txt')
2. 部分函数
functools.partial (?) 函数允许你创建带有预填充参数的新函数 :
from functools import partial
# Instead of writing a new function
def power_of_two(x):
return pow(x, 2)
# You can use partial
power_of_two = partial(pow, exp=2)
# Create a base-2 logarithm function
import math
log2 = partial(math.log, base=2)
print(log2(8)) # Outputs: 3.0
这对于回调函数或在处理 高阶函数 时特别有用。
3. 解构泛化
解包运算符 * 和 ** 比我们大多数人都意识到的要更通用:
# Merging dictionaries (Python 3.5+)
defaults = {"colour": "red", "size": "medium"}
user_settings = {"size": "large", "mode": "advanced"}
settings = {**defaults, **user_settings}
print(settings) # {'colour': 'red', 'size': 'large', 'mode': 'advanced'}
# Extended unpacking (Python 3.0+)
first, *middle, last = [1, 2, 3, 4, 5]
print(middle) # [2, 3, 4]
# Unpacking in function calls
def tag(name, **attributes):
attr_str = ' '.join(f'{k}="{v}"' for k, v in attributes.items())
return f'<{name} {attr_str}>'
props = {"class": "button", "id": "submit-btn", "disabled": True}
print(tag("button", **props)) # <button class="button" id="submit-btn" disabled="True">
4. 省略号(...)的意外用途
省略号字面量不只是用于类型提示:
# As a placeholder for future code
def function_to_implement_later():
... # More explicit than 'pass'
# In multidimensional NumPy slicing
import numpy as np
array = np.random.rand(4, 4, 4)
# Select the middle column from all rows in all matrices
middle_column = array[:, 1, ...]
5. 函数属性
Python 函数是对象,可以有属性 :
def process_data(data, verbose=False):
"""Process the given data."""
if verbose or process_data.always_verbose:
print("Processing data...")
# Processing logic here
return data
# Add an attribute to the function
process_data.always_verbose = False
# Later in your code
process_data.always_verbose = True # Enable verbose mode globally
这可以是在某些情况下作为全局变量的一个酷替代方案。
6. 自定义排序键使用key=参数
排序函数中的 key 参数比大多数人意识到的要强大得多:
# Sort strings by length
words = ["apple", "pear", "banana", "strawberry", "fig"]
sorted_by_length = sorted(words, key=len)
print(sorted_by_length) # ['fig', 'pear', 'apple', 'banana', 'strawberry']
# Sort complex objects
from operator import attrgetter, itemgetter
# For a list of dictionaries
users = [
{"name": "Alice", "age": 30},
{"name": "Bob", "age": 25},
{"name": "Charlie", "age": 35}
]
sorted_users = sorted(users, key=itemgetter("age"))
# For a list of objects
from collections import namedtuple
Person = namedtuple("Person", ["name", "age"])
people = [Person("Alice", 30), Person("Bob", 25), Person("Charlie", 35)]
sorted_people = sorted(people, key=attrgetter("age"))
7. 默认字典和计数器集合
collections 模块包含可以替代常见模式的数据结构 :
from collections import defaultdict, Counter
# Instead of:
word_count = {}
for word in text.split():
if word not in word_count:
word_count[word] = 0
word_count[word] += 1
# You can use:
word_count = defaultdict(int)
for word in text.split():
word_count[word] += 1
# Or even simpler:
word_count = Counter(text.split())
print(word_count.most_common(5)) # Shows the 5 most common words
8. 枚举类型用于更好的常量
枚举模块有助于定义有意义的常量:
from enum import Enum, auto
class Status(Enum):
PENDING = auto()
RUNNING = auto()
COMPLETED = auto()
FAILED = auto()
def process_job(job, status):
if status == Status.RUNNING:
print(f"Job {job} is still running")
elif status == Status.COMPLETED:
print(f"Job {job} completed successfully")
# ...
# So much more readable than numeric constants
current_status = Status.RUNNING
process_job("backup", current_status)
9. 数据类用于更简洁的代码
Python 3.7 引入了 数据类 (通过 PEP-557),它们减少了主要用于存储数据的类中的样板代码:
from dataclasses import dataclass, field
from typing import List
@dataclass
class Student:
name: str
student_id: int
courses: List[str] = field(default_factory=list)
active: bool = True
def enroll(self, course):
self.courses.append(course)
# No need to write __init__, __repr__, __eq__, etc.
student = Student("Jane Smith", 12345)
student.enroll("Computer Science 101")
print(student) # Student(name='Jane Smith', student_id=12345, courses=['Computer Science 101'], active=True)
10. 使用__slots__提高内存效率
对于具有固定属性集的类,__slots__ 可以显著减少内存使用:
class RegularPoint:
def __init__(self, x, y):
self.x = x
self.y = y
class MemoryEfficientPoint:
__slots__ = ['x', 'y']
def __init__(self, x, y):
self.x = x
self.y = y
# The __slots__ version uses significantly less memory when many instances are created
import sys
regular = RegularPoint(3, 4)
efficient = MemoryEfficientPoint(3, 4)
print(sys.getsizeof(regular)) # Typically larger
print(sys.getsizeof(efficient)) # Typically smaller
11. f 字符串调试(Python 3.8+)
在 Python 3.8 中,f 字符串增加了一个方便的调试功能: 已添加
x = 10
y = 20
print(f"{x=}, {y=}, {x+y=}")
# Outputs: x=10, y=20, x+y=30
通过显示变量名及其值,在调试时节省时间。
12. pathlib 用于现代文件操作
pathlib 模块为文件系统路径提供了面向对象的方法:
from pathlib import Path
# Create paths
data_dir = Path("data")
file_path = data_dir / "output.txt" # Path joining with / operator
# Create directory if it doesn't exist
data_dir.mkdir(exist_ok=True)
# Write to a file
file_path.write_text("Hello, world!")
# Read from a file
content = file_path.read_text()
# Iterate over files in a directory
for python_file in data_dir.glob("*.py"):
print(f"Found Python file: {python_file.name}")
。
- 上一篇: 如何编写Python漏洞验证脚本(单线程和多线程)
- 下一篇: Linux离线安装Python3教程
猜你喜欢
- 2025-05-21 Python 之 logging 模块详解
- 2025-05-21 避坑!Python任意参数黑科技:一招搞定参数洪水!90%都不知道
- 2025-05-21 10个你没有充分利用的令人惊叹的 Python 特性
- 2025-05-21 Python常用文件操作库使用详解
- 2025-05-21 2025-05-16:字符至少出现 K 次的子字符串Ⅰ。用go语言,给定一个
- 2025-05-21 Python的装饰器还是不会?来看看这篇文章(建议收藏)
- 2025-05-21 必知必会的15个Python知识点
- 2025-05-21 Linux离线安装Python3教程
- 05-25Python 3.14 t-string 要来了,它与 f-string 有何不同?
- 05-25Python基础元素语法总结
- 05-25Python中的变量是什么东西?
- 05-25新手常见的python报错及解决方案
- 05-2511-Python变量
- 05-2510个每个人都是需要知道Python问题
- 05-25Python编程:轻松掌握函数定义、类型及其参数传递方式
- 05-25Python基础语法
- 257℃Python短文,Python中的嵌套条件语句(六)
- 257℃python笔记:for循环嵌套。end=""的作用,图形打印
- 256℃PythonNet:实现Python与.Net代码相互调用!
- 251℃Python操作Sqlserver数据库(多库同时异步执行:增删改查)
- 251℃Python实现字符串小写转大写并写入文件
- 106℃原来2025是完美的平方年,一起探索六种平方的算吧
- 91℃Python 和 JavaScript 终于联姻了!PythonMonkey 要火?
- 81℃Ollama v0.4.5-v0.4.7 更新集合:Ollama Python 库改进、新模型支持
- 最近发表
- 标签列表
-
- python中类 (31)
- python 迭代 (34)
- python 小写 (35)
- python怎么输出 (33)
- python 日志 (35)
- python语音 (31)
- python 工程师 (34)
- python3 安装 (31)
- python音乐 (31)
- 安卓 python (32)
- python 小游戏 (32)
- python 安卓 (31)
- python聚类 (34)
- python向量 (31)
- python大全 (31)
- python次方 (33)
- python桌面 (32)
- python总结 (34)
- python浏览器 (32)
- python 请求 (32)
- python 前端 (32)
- python验证码 (33)
- python 题目 (32)
- python 文件写 (33)
- python中的用法 (32)