网站首页 > 技术文章 正文
编程派微信号:codingpy
本文由 Python 翻译组 最新翻译出品,原作者为 Michael Discroll,译者为 cystone,并由编程派作者 EarlGrey 校对。昨天,编程派已经发布了一篇多线程编程的教程,一文学会Python多线程编程。
译者简介:cystone, 成都信息工程大学,计算机学院学生。擅长领域:图像处理,机器学习。
多进程(multiprocessing)模块是在 Python 2.6 版本加入的。它最初由 Jesse Noller 和 Richard Oudkerk 在 PEP 371 中定义。multiprocessing 模块生成进程的方式就和你使用 threading 模块生成线程是一样的。但是在这里,因为你使用的是多进程,所以你可以规避全局解释锁(GIL),充分利用机器多处理器的优势。
multiprocessing 模块还包含一些 threading 模块没有的一些 API。例如,有一个巧妙的 Pool 类可以让你通过多个输入并行执行一个函数。我们将在后边的章节接触到 Pool。我们将从 multiprocessing 模块的Process 类开始介绍。
multiprocessing 入门
Process 类和 threading 模块的 Thread 类很像。我们来创建一系列调用同一个函数的进程,看它是如何工作的:
在这个例子中,我们导入了 Process ,并创建一个 doubler 函数。在这个函数中,我们将传入的数字扩大二倍。我们还用 Python 中的 os 模块得到当前进程的ID(或者说 pid)。这可以告诉我们哪个进程正在调用函数。代码底部的那个循环中,我们创建了一系列进程并启动它们。最下边的那个循环在每一个进程上调用了join() 方法,它将告诉 Python 等待进程结束。如果你需要结束一个进程,你可以调用它的 terminate() 方法。
当运行这段代码的时候,你将看到类似下边这样的输出:
5 doubled to 10 by process id: 10468
10 doubled to 20 by process id: 10469
15 doubled to 30 by process id: 10470
20 doubled to 40 by process id: 10471
25 doubled to 50 by process id: 10472
有时候让进程有一个有可读性的名字会更好。幸运的是,Process 类支持给进程命名。让我们来看一下:
这一次,我们引入了一些其他东西: current_process。current_process 和 Threading 模块中的current_thread 基本是一样的。我们用它来获取正在调用 doubler 函数的线程的名称。你可能注意到了,我们的前五个进程没有设置名字。第六个进程我们把它的名字设置为”Test”。我们看一下得到的输出:
5 doubled to 10 by: Process-2
10 doubled to 20 by: Process-3
15 doubled to 30 by: Process-4
20 doubled to 40 by: Process-5
25 doubled to 50 by: Process-6
2 doubled to 4 by: Test
输出显示,multiprocessing 模块默认为每一个进程的名字指派了一个数字。当然,我们设置名字的那个进程没有数字。
锁
Multiprocessing 模块和 Threading 模块一样,也支持“锁”。你需要做的就是 import Lock,获取它,执行操作后再释放它。我们来看一下:
这里我们创建了一个函数直接打印传递过来的任何东西。为了防止线程被其他事情干扰,我们用了一个 Lock 对象。这段代码将遍历我们列表中的三项内容,并分别为其创建一个进程。每个进程都会调用该函数,并将可迭代对象中的一个元素传入函数。因为我们用了锁,所以后边的进程将会等到锁释放之后才会继续执行。
日志
多进程的日志和多线程的日志有一点区别。原因是 Python 的 logging 包不支持进程共享锁,所以来自不同的进程的日志可能会混在一起。我们尝试一下在上边的例子里加一个基础日志。下边是代码:
记录日志最简单的方法是将所有的日志发送给 stderr 。我们可以通过调用函数 log_to_stderr 来实现。然后我们调用 get_logger 函数得到记录器(logger),并把日志级别设置为 INFO。剩下的代码和原来一样。这里要说明一下,我并没有用 join() 函数。相反, 父线程在退出的时候要显式地调用 join()。
当你运行上边的代码,会得到像下面这样的输出:
[INFO/Process-1] child process calling self.run()
tango
[INFO/Process-1] process shutting down
[INFO/Process-1] process exiting with exitcode 0
[INFO/Process-2] child process calling self.run()
[INFO/MainProcess] process shutting down
foxtrot
[INFO/Process-2] process shutting down
[INFO/Process-3] child process calling self.run()
[INFO/Process-2] process exiting with exitcode 0
10
[INFO/MainProcess] calling join() for process Process-3
[INFO/Process-3] process shutting down
[INFO/Process-3] process exiting with exitcode 0
[INFO/MainProcess] calling join() for process Process-2
现在你如果想把日志保存到硬盘,其实还有有些复杂的。你可以参考 Python 的官方实例。
Pool 类
Pool 类用于表示一个工作进程的池子。它有一些方法可以让你将任务分配给不同的工作进程。我们看一下这个简单的例子:
在这里,我们创建了一个 Pool 的实例并且告诉它创建三个工作进程。然后我们用 map 方法映射一个函数和一个可迭代对象到每一个进程。最后,我们打印出来结果,这里的结果是一个列表:[10, 20, 40]。
我们同样可以通过 apply_async 方法得到程序的结果:
这样做可以让我们得到进程的结果, get 函数的功能就是这个。你可能会注意到,我们加了一个超时(timeout)的设置,这是为了防止我们调用的函数发生意外。我们不想让它无限期的被阻塞。
进程通信
如果想让两个进程通信, multiprocessing 模块提供了两个主要方法: Queues 和 Pipes。Queue 保证了线程和进程的安全。另一篇关于线程的文章中也有一个 Queue 实现,我们在此基础上做些修改:
我们需要导入 Queue 和 Process。然后我们创建两个函数,一个创建数据并把它们加入队列里边,另一个取出数据并处理它们。把数据加入队列使用的是 Queue 的 put() 方法,取出数据用的是 get() 方法。最后一段代码创建了一个队列对象和一些进程,并运行它们。请注意,我们是在进程对象上调用了 join() 方法而不是在 Queue自身中。
结束语
本文讲述了很多内容。你已经学习了怎么对函数使用多进程,用队列实现进程间的通信,给线程命名等等。在 Python 的官方文档里边还有很多内容在本文里没有涉及到,你也可以去更深入的研究一下。不过现在你已经学会如何通过 Python 利用你的计算机的全部处理性能啦。
相关阅读
Python 官方文档:multiprocessing
Python Module of the Week: multiprocessing
Python Concurrency – Porting a Queue to multiprocessing
Python 翻译组是EarlGrey@编程派发起成立的一个专注于 Python 技术内容翻译的小组,目前已有近 30 名 Python 技术爱好者加入。
翻译组出品的内容(包括教程、文档、书籍、视频)将在编程派微信公众号首发,欢迎各位 Python 爱好者推荐相关线索。
推荐线索,可直接在编程派微信公众号推文下留言即可。
猜你喜欢
- 2025-06-10 【Python】性能加速之解析器加速Pypy 库使用说明
- 2025-06-10 【Python】性能加速之解析器加速Brython 库使用说明
- 2025-06-10 Rust与Python的文件系统性能对比分析:你可能想知道的一切
- 2025-06-10 比C语言还快20%!Mojo首个大模型开放下载,性能达Python版250倍
- 2025-06-10 Java、Go 和 Python 多线程性能对比
- 2025-06-10 Python编程通过懒属性提升性能(python性能调优)
- 2025-06-10 Python 3.13.0 重磅发布:性能起飞,GIL 不再是瓶颈!
- 2025-06-10 精通Python多进程(Multiprocessing)提升性能:8 个进阶层次解析
- 2025-06-10 Python 3.13 启动自由线程,性能会下降吗?
- 2025-06-10 Python3.11性能测评超3.10近64%
- 266℃Python短文,Python中的嵌套条件语句(六)
- 265℃python笔记:for循环嵌套。end=""的作用,图形打印
- 264℃PythonNet:实现Python与.Net代码相互调用!
- 259℃Python实现字符串小写转大写并写入文件
- 258℃Python操作Sqlserver数据库(多库同时异步执行:增删改查)
- 118℃原来2025是完美的平方年,一起探索六种平方的算吧
- 98℃Python 和 JavaScript 终于联姻了!PythonMonkey 要火?
- 92℃Ollama v0.4.5-v0.4.7 更新集合:Ollama Python 库改进、新模型支持
- 最近发表
-
- Python中怎么给属性增加类型检查或合法性验证?
- 如何把python绘制的动态图形保存为gif文件或视频
- Python XOR异或 操作(python异或函数)
- 每天学点Python知识:使用制表符或换行符来添加空白
- Python3+ 变量命名全攻略:PEP8 规范 + 官方禁忌 + 实战技巧,全搞懂!
- python之类的定义和对象创建篇(如何在python中定义一个属于对象的数据成员?)
- Python函数调用常见的8个错误及解决方案
- Python学不会来打我(30)python模块与包详解
- 《防秃指南:Python高频考点串烧(附翻车现场实录)》
- Python 面向对象:掌握类的继承与组合,让你的代码更高效!
- 标签列表
-
- python中类 (31)
- python 迭代 (34)
- python 小写 (35)
- python怎么输出 (33)
- python 日志 (35)
- python语音 (31)
- python 工程师 (34)
- python3 安装 (31)
- python音乐 (31)
- 安卓 python (32)
- python 小游戏 (32)
- python 安卓 (31)
- python聚类 (34)
- python向量 (31)
- python大全 (31)
- python次方 (33)
- python桌面 (32)
- python总结 (34)
- python浏览器 (32)
- python 请求 (32)
- python 前端 (32)
- python验证码 (33)
- python 题目 (32)
- python 文件写 (33)
- python中的用法 (32)