网站首页 > 技术文章 正文
数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。
Pandas内置绘图功能
Pandas基于Matplotlib提供了简洁的绘图接口,适合快速数据探索。
基础绘图方法
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 创建示例数据
np.random.seed(42)
df = pd.DataFrame({
'A': np.random.randn(100).cumsum(),
'B': np.random.rand(100) * 50,
'C': np.random.randint(0, 20, 100)
}, index=pd.date_range('2023-01-01', periods=100))
# 线图
df['A'].plot(title='线图示例', figsize=(10, 4))
plt.ylabel('数值')
plt.show()
多种图表类型
# 柱状图
df['C'].value_counts().sort_index().plot.bar(
title='频数统计柱状图',
color='skyblue',
alpha=0.7
)
plt.xticks(rotation=0)
plt.show()
# 面积图
df[['A', 'B']].plot.area(
title='面积图示例',
alpha=0.4,
figsize=(10, 5)
)
plt.show()
# 散点图
df.plot.scatter(
x='A',
y='B',
title='A与B的散点图',
c='C', # 使用C列作为颜色维度
cmap='viridis',
alpha=0.6
)
plt.show()
多子图绘制
# 创建多子图
axes = df.plot.line(
subplots=True,
layout=(2, 2),
figsize=(12, 8),
title=['A列', 'B列', 'C列', '']
)
# 调整布局
plt.tight_layout()
plt.show()
Matplotlib高级绘图
虽然Pandas绘图很方便,但Matplotlib提供了更精细的控制。
自定义图形样式
# 创建画布和坐标系
fig, ax = plt.subplots(figsize=(10, 6))
# 绘制多条线
ax.plot(df.index, df['A'],
label='趋势线',
color='blue',
linestyle='--',
linewidth=2)
ax.scatter(df.index, df['B'],
label='随机点',
color='red',
alpha=0.6)
# 添加图形元素
ax.set(title='自定义样式示例',
xlabel='日期',
ylabel='数值')
ax.legend()
ax.grid(True, linestyle=':', alpha=0.6)
# 调整坐标轴
ax.set_xlim(df.index.min(), df.index.max())
plt.xticks(rotation=45)
plt.show()
复杂图形组合
# 创建组合图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
# 上部:折线图
ax1.plot(df.index, df['A'], 'g-', label='趋势')
ax1.set_ylabel('趋势值', fontsize=12)
ax1.legend(loc='upper left')
ax1.set_title('组合图表示例', fontsize=14)
# 下部:柱状图
ax2.bar(df.index, df['C'],
width=1,
color='orange',
alpha=0.7,
label='频次')
ax2.set_ylabel('频次', fontsize=12)
ax2.legend(loc='upper left')
# 调整布局
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
高级可视化技巧
# 填充区域
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(df.index, df['A'], color='blue')
ax.fill_between(df.index,
df['A'].min(),
df['A'],
where=(df['A'] > df['A'].mean()),
color='blue',
alpha=0.2,
interpolate=True)
ax.axhline(df['A'].mean(), color='red', linestyle='--')
plt.title('填充区域示例')
plt.show()Seaborn统计可视化
Seaborn基于Matplotlib,提供了更高级的统计图形接口。
1. 分布可视化
Seaborn统计可视化
Seaborn基于Matplotlib,提供了更高级的统计图形接口。
分布可视化
import seaborn as sns
# 设置样式
sns.set_style("whitegrid")
sns.set_palette("husl")
# 分布图
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='A', kde=True, bins=20)
plt.title('分布直方图')
plt.show()
# 核密度估计
plt.figure(figsize=(10, 6))
sns.kdeplot(data=df, x='A', shade=True)
plt.title('核密度估计')
plt.show()
关系可视化
# 散点图矩阵
iris = sns.load_dataset('iris')
sns.pairplot(iris, hue='species', height=2.5)
plt.suptitle('鸢尾花数据集散点图矩阵', y=1.02)
plt.show()
# 热力图
corr = df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr,
annot=True,
cmap='coolwarm',
center=0,
fmt=".2f")
plt.title('相关系数热力图')
plt.show()
分类数据可视化
# 箱线图
tips = sns.load_dataset('tips')
plt.figure(figsize=(10, 6))
sns.boxplot(x='day', y='total_bill', hue='sex', data=tips)
plt.title('每日消费箱线图')
plt.show()
# 小提琴图
plt.figure(figsize=(10, 6))
sns.violinplot(x='day', y='total_bill',
hue='sex',
split=True,
data=tips)# 创建模拟电商数据
np.random.seed(42)
dates = pd.date_range('2023-01-01', '2023-12-31')
categories = ['Electronics', 'Clothing', 'Home', 'Books']
data = {
'Date': np.random.choice(dates, 500),
'Category': np.random.choice(categories, 500),
'Sales': np.random.randint(50, 500, 500),
'Profit': np.random.randn(500).cumsum() * 100 + 1000
}
ecom_df = pd.DataFrame(data)
# 1. 月度销售趋势分析
monthly_sales = ecom_df.groupby(
[ecom_df['Date'].dt.month_name(), 'Category']
)['Sales'].sum().unstack()
plt.figure(figsize=(12, 6))
monthly_sales.plot(kind='area', alpha=0.6, stacked=True)
plt.title('分品类月度销售趋势')
plt.ylabel('销售额')
plt.xticks(rotation=45)
plt.legend(title='品类')
plt.tight_layout()
plt.show()
# 2. 利润分布分析
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.boxplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润分布')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
sns.violinplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润密度')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 3. 销售-利润关系分析
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Sales', y='Profit',
hue='Category',
size='Sales',
sizes=(20, 200),
alpha=0.7,
data=ecom_df)
plt.title('销售-利润关系气泡图')
plt.show()
plt.title('每日消费小提琴图')
plt.show()
实战案例:电商数据分析
# 创建模拟电商数据
np.random.seed(42)
dates = pd.date_range('2023-01-01', '2023-12-31')
categories = ['Electronics', 'Clothing', 'Home', 'Books']
data = {
'Date': np.random.choice(dates, 500),
'Category': np.random.choice(categories, 500),
'Sales': np.random.randint(50, 500, 500),
'Profit': np.random.randn(500).cumsum() * 100 + 1000
}
ecom_df = pd.DataFrame(data)
# 1. 月度销售趋势分析
monthly_sales = ecom_df.groupby(
[ecom_df['Date'].dt.month_name(), 'Category']
)['Sales'].sum().unstack()
plt.figure(figsize=(12, 6))
monthly_sales.plot(kind='area', alpha=0.6, stacked=True)
plt.title('分品类月度销售趋势')
plt.ylabel('销售额')
plt.xticks(rotation=45)
plt.legend(title='品类')
plt.tight_layout()
plt.show()
# 2. 利润分布分析
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
sns.boxplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润分布')
plt.xticks(rotation=45)
plt.subplot(1, 2, 2)
sns.violinplot(x='Category', y='Profit', data=ecom_df)
plt.title('分品类利润密度')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# 3. 销售-利润关系分析
plt.figure(figsize=(10, 6))
sns.scatterplot(x='Sales', y='Profit',
hue='Category',
size='Sales',
sizes=(20, 200),
alpha=0.7,
data=ecom_df)
plt.title('销售-利润关系气泡图')
plt.show()
可视化最佳实践
图表选择指南
分析目的 | 推荐图表类型 |
趋势分析 | 折线图、面积图 |
分布分析 | 直方图、箱线图、小提琴图 |
关系分析 | 散点图、气泡图、热力图 |
构成分析 | 堆叠柱状图、饼图(少量类别) |
比较分析 | 柱状图、雷达图 |
样式优化技巧
# 设置全局样式
plt.style.use('seaborn') # 可选: ggplot, seaborn, fivethirtyeight等
# 创建专业图表
fig, ax = plt.subplots(figsize=(10, 6))
# 绘制内容
sns.lineplot(data=df, x=df.index, y='A', ax=ax, label='趋势')
# 优化样式
ax.set_title('专业图表示例', fontsize=14, pad=20)
ax.set_xlabel('日期', fontsize=12)
ax.set_ylabel('数值', fontsize=12)
ax.tick_params(axis='both', which='major', labelsize=10)
ax.legend(fontsize=10, framealpha=0.9)
# 添加注释
ax.annotate('峰值点',
xy=(df['A'].idxmax(), df['A'].max()),
xytext=(20, 20),
textcoords='offset points',
arrowprops=dict(arrowstyle='->'))
# 调整边距
plt.tight_layout()
plt.show()
性能优化
# 大数据集优化
large_df = pd.DataFrame(np.random.randn(100000, 3),
columns=['A', 'B', 'C'])
# 方法1: 采样
sample_df = large_df.sample(1000)
# 方法2: 使用hexbin替代散点图
plt.figure(figsize=(10, 6))
plt.hexbin(large_df['A'], large_df['B'], gridsize=50, cmap='Blues')
plt.colorbar(label='频数')
plt.title('大数据集hexbin图')
plt.show()
总结与进阶
工具对比
特性 | Pandas | Matplotlib | Seaborn |
易用性 | |||
灵活性 | |||
统计功能 | |||
默认美观度 |
进阶方向
# 1. 交互式可视化
# from plotly.express import scatter
# fig = scatter(df, x='A', y='B', color='C')
# 2. 地理空间可视化
# import geopandas as gpd
# world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
# 3. 3D可视化
# from mpl_toolkits.mplot3d import Axes3D
# fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
掌握这些可视化技术后,我们可以有效探索和展示数据中的模式和见解。记住,好的可视化应该既美观又能清晰传达信息。
实践是提高可视化技能的最佳方式,建议大家从实际数据集开始,不断尝试不同的图表类型和样式。
猜你喜欢
- 2025-07-07 用Python制作数据报告:如何自动生成PDF格式的报告?
- 2025-07-07 20种Python数据可视化绘图 直接复制可用
- 2025-07-07 第十二章:Python与数据处理和可视化
- 2025-07-07 Python数据可视化:比较常用的图表工具库
- 2025-07-07 Python能做出BI软件的联动图表效果?这可能是目前唯一的选择
- 2025-07-07 Python 数据分析必学的 10 个核心库:从基础操作到高阶建模全攻略
- 2025-07-07 实战PyQt5: 162-使用堆积柱状图显示温度信息
- 2025-07-07 每天一个 Python 库:matplotlib 全能绘图神器零基础到进阶!
- 2025-07-07 AI办公自动化-kimi批量在多个Excel工作表中绘制柱状图
- 2025-07-07 我用Python的Seaborn库,绘制了15个超好看图表!
- 276℃Python短文,Python中的嵌套条件语句(六)
- 276℃python笔记:for循环嵌套。end=""的作用,图形打印
- 272℃PythonNet:实现Python与.Net代码相互调用!
- 266℃Python操作Sqlserver数据库(多库同时异步执行:增删改查)
- 266℃Python实现字符串小写转大写并写入文件
- 126℃原来2025是完美的平方年,一起探索六种平方的算吧
- 107℃Ollama v0.4.5-v0.4.7 更新集合:Ollama Python 库改进、新模型支持
- 107℃Python 和 JavaScript 终于联姻了!PythonMonkey 要火?
- 最近发表
- 标签列表
-
- python中类 (31)
- python 迭代 (34)
- python 小写 (35)
- python怎么输出 (33)
- python 日志 (35)
- python语音 (31)
- python 工程师 (34)
- python3 安装 (31)
- python音乐 (31)
- 安卓 python (32)
- python 小游戏 (32)
- python 安卓 (31)
- python聚类 (34)
- python向量 (31)
- python大全 (31)
- python次方 (33)
- python桌面 (32)
- python总结 (34)
- python浏览器 (32)
- python 请求 (32)
- python 前端 (32)
- python验证码 (33)
- python 题目 (32)
- python 文件写 (33)
- python中的用法 (32)